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Abstract

Purpose – To demonstrate, through numerical models, that it is possible to simulated low-gravity
phase change (melting), of an electrically conducting material (gallium), in terrestrial conditions via the
application of electromagnetic fields.

Design/methodology/approach – A complete three-dimensional mathematical formulation
governing a phase change process in the presence of an electromagnetic field has been developed. In
addition a comprehensive parametric study has been completed to study the various effects of gravity,
Stefan number, Hartmann number and electromagnetic pressure number upon the phase change process.

Findings – The results show that the application of an electromagnetic filed can be used to simulate
key melting characteristics found for actual low-gravity. However, the resulting three-dimensional
flow field in the melted region differs from actual low-gravity. The application of an electromagnetic
field creates a flow phenomenon not found in actual low-gravity or previously seen in two-dimensional
problems.

Research limitations/implications – Future work may include the use of oscillating
electromagnetic fields to enhance convection in energy storage systems in a low-gravity environment.

Practical implications – The ability to suppress unwanted convective flows in a phase change
process without the high magnetic fields necessary in magnetic field only suppression systems.

Originality/value – This work fills a void in the literature related to conducting fluids and the
effects of magnetic and electromagnetic fields.
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Nomenclature
A ¼ area (m2)
Bo ¼ externally applied magnetic field

(Tesla)
C ¼ specific heat (J kg21 K21)
e ¼ enthalpy function (J kg21)
E ¼ dimensionless enthalpy (defined in

equation (32b))
E ¼ applied electric field (mV)
fs ¼ solid volume fraction
fs ¼ electrical conductivity control

parameter
fm ¼ viscosity control parameter
g ¼ gravity acceleration (m s22)
go ¼ gravity acceleration on earth (m s22)
Gr ¼ Grashoff number (defined in

equation (32c))
Ha ¼ Hartmann number (defined in

equation (32d))
H0 ¼ Joule heating (defined in equation

(9))
H * ¼ heights of container and PCM (m)
h ¼ latent heat (J kg21)
J ¼ electrical current density (A m22)
L0 ¼ dimensionless heat capacity (defined

in equation (32d))
L * ¼ length of container and PCM (m)
Mp ¼ electromagnetic pressure number

(defined in equation (32e))
k ¼ thermal conductivity (W m21 K21)
Pr ¼ Prandtl number (defined in equation

(32b))
p ¼ pressure field (N m22)
p0 ¼ total pressure field (N m22)
P0 ¼ dimensionless pressure field

(defined in equation (32b))
Rem ¼ magnetic Reynolds number ðRem ¼

mmsuH* Þ
S ¼ dimensionless enthalpy source term
Xinf ¼ interface front
Ste ¼ Stefan number
T ¼ temperature (K)
t ¼ time (s)

u; v;w ¼ velocity fields (m s21)
U,V,W ¼ dimensionless velocity fields

(defined in equation (32a))
W * ¼ widths of container and PCM (m)
X,Y,Z ¼ dimensionless coordinates (defined

in equation (32a))
Symbols

R ¼ electric resistivity

f ¼ electrodynamic scalar potential

(volt m21)

a ¼ thermal diffusivity (m2 s21)

b ¼ coefficient of volumetric expansion

(K21)

bR ¼ temperature coefficient of resistivity

(K21)

s ¼ electric conductivity (V21m21)

G ¼ dimensionless diffusion coefficient

Pr ¼ density ratio (defined in equation

(32e))

Ps ¼ electric conductivity ratio (defined in

equation (32e))

PR ¼ defined in equation (32e)

m ¼ viscosity (kg m21 s21)

mm ¼ magnetic permeability (kgm c22)

n ¼ kinematic viscosity (m2 s21)

u ¼ dimensionless temperature field

(defined in equation (32d))

r * ¼ local density (kg m23)

t ¼ dimensionless time (defined in

equation (32b))

c ¼ dimensionless electric potential

(defined in equation (32b))

Subscripts
o ¼ externally applied

f ¼ fusion (melting)

l ¼ liquid phase

s ¼ solid phase

w ¼ wall

Introduction
The control of natural convective flow during melting and solidification has received
significant attention over the past 15 years. With solidification receiving the majority
of the attention due to the practical applications (i.e. crystal growth or continuous
casting) of controlling convective flows in melted materials. Typically these natural
convective induced flows dominate over other induced flows, which may show
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contributions at decreased levels of gravity. For example, the expansion or contraction
of a solid material undergoing a phase change process can affect the flow field
in the melted regions under low-gravity environments (Asako and Faghri, 1999). In
the crystal growth industry, the goal is to reduce (if possible eliminate) all the
convective flows so that a better end product can be achieved. By controlling (in this
case damping) the flow field, a more uniform distribution of impurities can be achieved.
Also, the solidification process can proceed in a more conduction-like manner, which
can reduce residual stress generated by a liquid forming into a solid. Typically
magnetic fields are used to dampen the convective flow in the crystal growth industry.
It is well known that a magnetic field can significantly suppress/dampen the
convective flow field (Ozoe and Okada, 1989) and thus controlling the solid/liquid
interface shape and propagation. Dulikravich et al. (1994) confirmed that the strength
and the orientation of the magnetic field has profound influence on the solidification
and melting since it weakens flow re-circulation regions and causes distorted velocity
profiles. However, Dennis and Dulikravich (2002) concluded that velocity within the
melt could not be completely halted due to limitations of the applied magnetic field.
They postulate that magnetic fields stronger than 1.0 T might be required to
completely eliminate motion within the melt.

The study of convective flow suppression in solidification of liquid materials has
not been limited to magnetic suppression only, electric and electromagnetic fields have
also been applied to control the flow field. Dulikravich and Kosovic (1992) performed a
numerical feasibility study examining both magnetic and electric fields independently
applied to semi-conducting melts. They concluded that solidification with a strong
magnetic filed is significantly slower than solidification in micro gravity, and the
application of an electric field caused irregularities in the melt/solid interface shape.
Since it is much easier to generate an electric potential field difference than it is to
generate a strong magnetic filed, they suggested that the possibility of an optimally
controlled solidification process involving magnetic and electric fields may exist.
Ha et al. (2003) used numerical simulations to compare the thermal flows and
solidification of continuous steel casting while under the influence of electromagnetic
fields. They concluded that improvements in flow and temperature controls can be
obtained by the application of an electromagnetic field. By controlling the temperature
field they were able to decrease the maximum and minimum temperature difference
and thereby improved uniform quality slab production. Harada et al. (1998) concluded
that the application of a magnetic field suppresses mixing of solute elements in clad
casting. They achieved good correlation between numerical simulation predictions and
actual clad casting experiments.

While numerous papers have addressed conducting fluids and the effects of
magnetic and electromagnetic fields, none have sought to study the effects of
electromagnetic fields on melting when applied and used to simulate low-gravity. It is
the aim of this paper to expand the work of Gonçalves et al. (2005) into three
dimensions and study the resulting effects. Both transverse electric and magnetic fields
are used to counteract the gravitational forces exerted on the system during the
melting process. The introduction of an electric field can significantly reduce the value
of the magnetic field intensity necessary to produce the same Lorentz force needed to
counteract the gravitational forces present in the system. However, the flow field
distortion is no longer limited to a high magnetic field only as stated by Gonçalves et al.
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(2005). It is shown that the application of an electromagnetic field generates a flow field
phenomenon not present for actual low-gravity. While these distortions in the flow
field do exist when an electromagnetic field is applied, it is further shown that the
intensity of these distortions is much less than that of an applied magnetic field.
Moreover, the results show that an electromagnetic field can be used to better simulate
actual low-gravity than a magnetic field alone.

Problem description
The problem geometry consists of a three-dimensional rectangular container of height
(H*), width (W*), and length (L*), which houses a solid rectangular phase change
material (PCM) (Gallium) of the same size as shown in Figure 1. The entire system is
placed under a transverse electromagnetic field. Where the magnetic field is applied in
the positive x-direction and is crossed with an electric field in the positive z-direction,
thus generating a Lorentz force to oppose the influence of gravity.

Initially the system is kept at the fusion (melting) temperature (Tf). The left sidewall
is suddenly raised to a uniform higher temperature ðTw . T fÞ: The right sidewall of
the container is kept at the fusion temperature (Tf), and the remaining walls are
adiabatic. Melting of the PCM begins and a natural convective flow occurs in the
melting region. The front and back walls are electrically conducting while the
remaining walls are electrically insulated. The thermophysical and electromagnetic
properties associated with the system can be found in Table I.

Governing equations
The melting of an electroconductive PCM in the presence of an electromagnetic field is
governed by the conservation of mass, momentum and energy, the induction equations
and/or the Poisson equation for electric potential. While this equation set can be solved

Figure 1.
Problem schematic and
direction of electric and

magnetic fields

Phase change in
3D rectangular

cavity

713



numerically it possess significant challenges to obtain a converged solution due to their
highly coupled nature. In order to simplify the equation set, the induction-free MHD
approximation is employed (Davidson, 2001). This approximation allows for the
induced fields (magnetic and/or electric) to be neglected when the magnetic Reynolds
number (Rem), which is the ratio of magnetic advection to magnetic diffusion, is much
less than unity (Rem ø 6:428 £ 1026 for this problem). Thus allowing the MHD effects
of the imposed fields to be expressed solely through the source terms in the
conservation equations.

In addition to the induction-free MHD approximation the flow is assumed to be
laminar, incompressible, and the thermophysical properties are constant in each phase
(the properties are evaluated at the melting temperature, Tf). Furthermore, the densities
of liquid and solid phases are assumed to be the same, rs ¼ rl ¼ rf , except for the
density that appears in the body force term which gives rise to the force imbalance
between the solid and the liquid phases. The formulation is carried out as a
single-domain problem, utilizing the enthalpy method developed by Cao and Faghri
(1989) where the same conservation equations are used for both the solid and liquid
phases, by considering the solid region as a liquid with an infinite viscosity.

Hence, the governing equations for the motion of both phases will be based on those
documented in the previous papers (Gonçalves et al., 2005; Asako et al., 2002).
Assuming that the induced magnetic fields are negligible compared to the applied
field (Bo), and that the resulting Lorentz force due to electromagnetic field works
against gravity, the governing equations can be expressed according by the following
laws:

Mass conservation:

›u

›x
þ

›v

›y
þ

›w

›z
¼ 0 ð1Þ

Parameter Symbol Value Unit

Width, height, length of PCM W, H, L 0.04, 0.04, 0.04 m
Melting point Tm 29.78 8C
Temperature difference DT ¼ Tw 2 Tf 10.00 8C
Density of solid rs 5907.0 kg m23

Density of melt rf 6094.7 kg m23

Viscosity m 1.92 £ 1023 kg m21 s21

Thermal conductivity K 31.24 W m21 K21

Specific heat (500 K) C 397.6 J kg21 K21

Electrical conductivity of solid ss 6644518.0 mho m21

Electrical conductivity of melt sf 3846154.1 mho m21

Volume coefficient of thermal expansion bT 1:27 £ 1024 K21

Temperature coefficient of resistivity bR 3:12 £ 1023 K21

Latent heat of fusion L 80160.0 J kg21

Momentum diffusivity n 3:15 £ 1027 m2 s21

Thermal diffusivity of melt af 1:29 £ 1025 m2 s21

Thermal diffusivity of solid aS 1:33 £ 1025 m2 s21

Source: Metals Handbook (1990), Filyand and Semenova (1968), and Yahia and Thobe (1972)

Table I.
Electrical and
thermophysical
properties of gallium the
dimension of PCM and
cavity used
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Momentum conservation:

x : r*
›u

›t
þ r*u

›u

›x
þ r*v

›u

›y
þ r*w

›u

›z
¼ 7ðm*7uÞ2

›p

›x
þ Fx ð2Þ

y : r*
›v

›t
þ r*u

›v

›x
þ r*v

›v

›y
þ r*w

›v

›z
¼ 7ðm*7vÞ2

›p

›y
2 r*go þ Fy ð3Þ

z : r*
›w

›t
þ r*u

›w

›x
þ r*v

›w

›y
þ r*w

›w

›z
¼ 7ðm*7wÞ2

›p

›z
þ Fz ð4Þ

Energy conservation (enthalpy transformed; Cao and Faghri, 1989):

r*
›e

›t
þ r*u

›e

›x
þ r*v

›e

›y
þ r*w

›e

›z
¼ 7ðg7eÞ þ 72sþ H 0 ð5Þ

Current conservation law:

7 · J ¼ 0 ð6Þ

Ohm’s law (for moving media):

J ¼ s*ðEþ u £ Boi Þ ¼ s* Exi þ ðEy þ wBoÞjþ ðEz 2 vBoÞk
� �

ð7Þ

Lorentz force acting on the system

F ¼ J £ ½Boi� ¼ s* ðEz 2 vBoÞBoj2 ðEy þ wBoÞBok
� �

ð8Þ

Joule heating due to flow of current through the medium

H 0 ¼
J2

s*
¼ s* Ex þ ðEy þ wBoÞ

2 þ ðEz 2 vBoÞ
2

� �
ð9Þ

With the introduction of the electrodynamic scalar potential (f), the electric field E can
be expressed as

E ¼ 27f ð10Þ

which in turns, reforms Ohm’s law (equation (7)) as

J ¼ s*ð27fþ u £ Boi Þ

¼ s* 2
›f

›x
i þ 2

›f

›y
þ wBo

� �
jþ 2

›f

›z
2 vBo

� �
k

� �
ð11Þ

from equation (11) and the Current conservation law, equation (6), the governing
equation for the electrical potential (f) can be determined as

7ðs*7fÞ ¼ 7 · ðs*u £ Boi Þ ð12Þ

or in Cartesian coordinate
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›

›x
s*

›f

›x

� �
þ

›

›y
s*

›f

›y

� �
þ

›

›z
s*

›f

›z

� �
¼ Bo

›

›y
ðs*wÞ2 Bo

›

›z
ðs*vÞ ð13Þ

The electromagnetic force acting on the medium in the x, y and z directions, can be
expressed as

Fx ¼ 0 ð14Þ

Fy ¼ 2s*
›f

›z
Bo 2 s*vB2

o ð15Þ

Fz ¼ s*
›f

›y
Bo 2 s*wB2

o ð16Þ

and the joule heating due to flow of current through the medium is given as

H 0 ¼
J2

s*
¼ s*

›f

›x

� �2

þs* 2
›f

›y
þ wBo

� �2

þs* 2
›f

›z
2 vBo

� �2

ð17Þ

By reducing the gravitational forces on the medium, the hydrostatic pressure within
the melt is also affected. In this case, the hydrostatic pressure ðrfgoyÞ is reduced by the
electromagnetostatic pressure ðrfgmyÞ such that the “hydro-electromagnetostatic”
pressure can be expressed as

p1 ¼ rfðgo 2 gmÞy ð18Þ

gm is the electromagnetostatic acceleration which opposes gravity throughout the
medium even before the melting starts, and is given according to Ramo et al. (1994) as

gm ¼
sfEoBo

rf
ð19Þ

where

Eo < Ez ¼ 2
›f

›z

is the constant electric field due to the externally applied current along the z-axis given
by Jo ¼ s*Eo: The total pressure p0, felt by the fluid, is the sum of the local pressure
( p), plus the hydro-electromagnetostatic pressure ( p1) given as p0 ¼ pþ p1, or

p ¼ p0 2 rfgoyþ sfEoBoy ð20Þ

Then the modified pressure gradient becomes

2
›p

›x
¼ 2

›p0

›x
ð21Þ

2
›p

›y
¼ 2

›p0

›y
þ rfgo þ sf

›f

›z
Bo ð22Þ

2
›p

›z
¼ 2

›p0

›z
ð23Þ
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Under this modified pressure field, the y-momentum equation, equation (3), can be
recast as:

r*
›v

›t
þ r*u

›v

›x
þ r*v

›v

›y
þ r*w

›v

›z
¼ 7ðm*7vÞ2

›p

›y
2 ðr*2 rfÞgo 2 ðs*2sfÞ

�
›f

›z
Bo 2s*vB2

o ð24Þ

The gravitational forces in the liquid and the solid regions can then be expressed under
Boussinesq approximation as:

2ðr* 2 rfÞgo ¼
2ðrl 2 rfÞgo ¼ rfbðT 2 T fÞgo in the liquid region

2ðrs 2 rfÞgo in the solid region

(
ð25Þ

Likewise, the electrostatic body force affects the liquid and the solid regions differently.
Namely, the two expressions can be given as:

2ðs*2sfÞ
df

dz
Bo ¼

bRðT2T fÞ

1þbRðT2T fÞ
sf

›f

›z
Bo the liquid region

2ðss2sfÞ
›f

›z
Bo in the solid region

8>>><
>>>:

ð26Þ

where use of electrical resistivity definition R ; 1=s has been made to derive the
temperature-dependent electrostatic body force in the liquid region. Like the density,
electrical resistivity is usually assumed to vary linearly with temperature as:

RL ¼ Rf 1 þ bRðT 2 T fÞ
� �

ð27Þ

where bR is the temperature coefficient of resistivity of the PCM.
In terms of electrical conductivity, equation (27) is given as:

1

sL
¼

1

sf
1 þ bRðT 2 T fÞ
� �

or sL ¼
sf

1 þ bRðT 2 T fÞ
� � ð28Þ

Hence, the effects of temperature change on electrical conductivity difference within
the liquid region can be expressed as:

sL 2 sf ¼
sf

1 þ bRðT 2 T fÞ
� �2 sf ¼ 2

bRðT 2 T fÞsf

1 þ bRðT 2 T fÞ
� � ð29Þ

which leads to the outcome of equation (26). Thus the final form of y-momentum can be
rewritten as,
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r*
›v

›t
þ r*u

›v

›x
þ r*v

›v

›y
þ r*w

›v

›z
¼ 7ðm*7vÞ2

›p0

›y

þ

rfbðT 2 T fÞgo þ
bRðT 2 T fÞ

1 þ bRðT 2 T fÞ
sf

›f

›z
Bo

2ðrS 2 rfÞgo 2 ðss 2 sfÞ
›f

›z
Bo

8>>><
>>>:

2 s*vB2
o

ð30Þ

Note that as with density, the electrical conductivity is assumed constant in each
phase, except for the terms in the body force. This is in agreement with the criteria of
Boussinesq approximation.

Boundary conditions

t # 0 u ¼ v ¼ w ¼ 0 and e ¼ 0 ð31aÞ

t $ 0 u ¼ v ¼ w ¼ 0 on all the walls ð31bÞ

›f

›y
¼ 0 top and bottom walls

›f

›x
¼ 0 left and right walls

f ¼ fo back wall

f ¼ fl front wall

ð31cÞ

e ¼ hþ CðTw 2 T fÞ on the left wall

e ¼ 0 on the right wall

›e

›y
¼ 0 on the top and bottom walls

›e

›z
¼ 0 on the front and back walls

ð31dÞ

Dimensionless parameters
To cast the governing equations in dimensionless form, the following dimensionless
group and parameters are used:
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X¼
x

H *
; Y ¼

y

H *
; Z ¼

z

H *
; U ref ¼

af

H *
; U ¼u

H *

af
; V ¼ v

H *

af
; W ¼w

H *

af
ð32aÞ

c ¼
f2 fl

f0 2 fl
¼

f2 fl

Df
; E ¼

e

h
; P 0 ¼

p0

rf U
2
ref

; t ¼ t
a

ðH *Þ2
; Pr ¼

nf

af
ð32bÞ

Ar ¼
ðrS 2 rfÞgoðH *Þ3

rf n
2
f

; Gr ¼
gobðTw 2 T fÞ ðH *Þ3

nf
; Ste ¼

Cf

h
ðTw 2 T fÞ ð32cÞ

Ha ¼ Bo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H *2sf

rfnf

s
; u ¼

ðT 2 T fÞ

ðTw 2 T fÞ
; S ¼ s

Cf

hkf
; L0 ¼

a2
f

ðH *Þ2h
ð32dÞ

Mp ¼
sBoDfðH *Þ3

rfn
2
f

; PR ¼ bRDT; Pr ¼
rs

rf
; Ps ¼

ss

sf
ð32eÞ

With the introduction of the aforementioned dimensionless parameters, the governing
equations are given as:

Continuity equation:

›U

›X
þ

›V

›Y
þ

›W

›Z
¼ 0 ð33Þ

X-momentum:

›U

›t
þ U

›U

›X
þ V

›U

›Y
þW

›U

›Z
¼ 7ðGm7U Þ2

›P 0

›X
ð34Þ

Y-momentum:

›V

›t
þ U

›V

›X
þ V

›V

›Y
þW

›V

›Z
¼ 7ðGm7V Þ2

›P 0

›Y
þ ð1 2 f sÞGrPr

2Q

þ ð1 2 f sÞ
PRMpPr 2u

1 þPRu

dc

dZ
2 f sðQÞHa

2PrV

ð35Þ

Z-momentum:

›W

›t
þ U

›W

›X
þ V

›W

›Y
þW

›W

›Z
¼ 7ðGm7W Þ2

›P 0

›Z
þ f sðQÞMpPr 2 dc

dY

2 f sðQÞHa
2PrW ð36Þ
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Electric potential:

›

›X
f sðQÞ

›c

›X

� �
þ

›

›Y
f sðQÞ

›c

›Y

� �
þ

›

›Z
f sðQÞ

›c

›Z

� �

¼
Ha 2

MpPr

›

›Y
ð f sðQÞW Þ2

›

›Z
ð f sðQÞV Þ

� �
ð37Þ

Energy equation:

›E

›t
þ U

›E

›X
þ V

›E

›Y
þW

›E

›Z
¼ 7ð7GaEÞ þ 72S þ f sðQÞHa

2PrL0 MpPr

Ha 2

›c

›X

� �2
"

þ 2
MpPr

Ha 2

›c

›Y
þW

� �2

þ 2
MpPr

Ha 2

›c

›Z
2 V

� �2
#

ð38Þ

where fs is the solid volume fraction in a control volume, i.e.

f s ¼

0 liquid phase

0 , f s , 1; melting zone

1 solid phase

8>><
>>: ð39Þ

such that, the local density can be expressed as:

r* ¼ rf þ f sðrs 2 rfÞ ð40Þ

the electrical conductance also follows a similar relation as density, i.e.

s* ¼ sf þ f sðss 2 sfÞ ð41Þ

which gives rise to the electrical conductivity control parameter as:

f s ¼
s*

sf
¼ 1 þ f sðPs 2 1Þ ð42Þ

or if the temperature effect in the liquid region is taken into account then equation (41)
can be expressed more generally as

f sðQÞ ¼
s*ðQÞ

sf
¼

1

1 þPRQ
þ f s Ps 2

1

1 þPRQ

� �
ð43Þ

where Ps is the reference solid-to-liquid electric conductivity ratio defined in
equations (32a)-(32e).
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The viscosity control parameter fm is given as:

f m ¼

1 liquid phase

1 , f m , 1; melting zone

1 solid phase

8>><
>>: ð44Þ

such that the diffusion coefficient in the dimensionless momentum equation can be
generalized as:

Gm ¼ Prf m ð45Þ

The diffusion coefficient ðGaÞ, and the source term (S) for the dimensionless energy
equation becomes:

Ga ¼

1

0

aS=af

8>><
>>: and S ¼

21 in liquid region where E $ 1

0 in mushy region where 0 , E , 1

0 in solid region where E # 0

8>><
>>: ð46Þ

Dimensionless initial and boundary conditions

t # 0 U ¼ V ¼ W ¼ 0 and E ¼ 0 ð47aÞ

t $ 0 U ¼ V ¼ W ¼ 0 on all the walls ð47bÞ

›c

›Y
¼ 0 top and bottom walls

›c

›X
¼ 0 left and right wall

c ¼ 1 back wall

c ¼ 0 front wall

ð47cÞ

E ¼ 1 þ Ste on the left walls

E ¼ 0 on the right walls

›E

›Y
¼ 0 on the top and bottom walls

›E

›Z
¼ 0 on the front and back walls

ð47dÞ

Numerical procedure
The governing equations (33)-(38) were discretized using a control-volume based finite
difference scheme. The SIMPLE algorithm (Patankar, 1980) was used to solve the
coupled heat transfer and magnetohydrodynamic (MHD) flow problem. The QUICK
scheme of Hayase et al. (1992) coupled with a modified upwind method proposed by
Cao and Faghri (1989), was employed in the solution of the dimensionless enthalpy
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equation. An upwind scheme was used for the solution of the potential equation and a
power law scheme was utilized for the remaining discretized momentum equations.

The grid dependence was examined for a series of three-dimensional grid systems.
The mass circulation and solid/liquid interface location, taken at the center of the
enclosure and points along the enclosure boundaries, for the different grid systems
are presented in Table II and Figure 2. The difference between the 62 £ 40 £ 31 and the
42 £ 42 £ 22 grid system for the mass circulation is 1.99 percent. The difference
between the aforementioned grid systems for the interface locations (Table II) ðjm; kbÞ;
ðjm; kmÞ; ðjm; kfÞ; ðjb; kmÞ; and ðjt; kmÞ is 0.22, 0.22, 0.22, 0.05, and 0.11 percent,
respectively. Since the difference between these systems was very small it was decided
to continue the remaining simulations at 42 £ 42 £ 22 while at the same time realizing
the benefit of decreased computational time.

With the grid dependence study completed the effects of the time step were then
examined. Time steps of 0.01, 0.001 and 0.0001 were studied. Because of its coarse size
the 0.01 time step cause difficulty in obtaining convergence and was subsequently
eliminated from consideration. The difference in the calculated mass circulation for
the 0.001 and 0.0001 time steps was 0.22 percent, with an increase in run time of
400 percent for the 0.0001 time step and, therefore, it was decided to perform all
calculations at a time step of 0.001.

Finally the problem convergence was controlled by the residual term calculated
during each iteration. A maximum residual of 1:0 £ 1026 is used to determine the
problem convergence and time step advancement. When the discretized governing
equations (34)-(38) are evaluated for convergence, every cell within the domain must
contain a residual of less than 1:0 £ 1026:

Interface location (Xinf)
Grid system Mass circulation (cmax) ðjm; kbÞ ðjm; kmÞ ðjm; kfÞ ðjb; kmÞ ðjt; kmÞ Run time (min)

22 £ 22 £ 22 0.58214 0.62695 0.62695 0.62695 0.60873 0.65663 17
32 £ 32 £ 32 0.61201 0.62766 0.62766 0.62766 0.60800 0.65589 334
42 £ 42 £ 22 0.63161 0.62821 0.62821 0.62821 0.60662 0.65747 374
42 £ 42 £ 42 0.63453 0.62768 0.62768 0.62768 0.60744 0.65533 774
52 £ 52 £ 52 0.64689 0.62684 0.62684 0.62684 0.60706 0.66000 2,413
62 £ 40 £ 31 0.64446 0.62682 0.62682 0.62682 0.60628 0.65676 1,003

Table II.
Grid dependence study
(Pr ¼ 0:0244;
Gr ¼ 80358:46; t ¼ 4)

Figure 2.
Position references
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Code validation
In order to validate the accuracy of the computer code two test cases were performed.
The first test case consisted of a natural convection problem with and without the
application of a magnetic field in the x-direction. For this the work of Bessaih et al.
(1999) was used as a benchmark. Their problem consisted of a cubical enclosure filled
with liquid gallium subjected to a temperature differential in the x-direction. A grid
system similar to that of Bessaih et al. (1999) was utilized for our code validation.
A parametric study was performed where the Rayleigh (Ra) number was varied from
104 to 106 and the magnetic field (Ha) in the x-direction was varied from zero to 100, all
for Pr ¼ 0:025: The identical boundary conditions have been used where the hot wall
is maintained at u ¼ 1:0 and the cold wall is maintained at u ¼ 0: The average Nusselt
number (Nu) calculated on the hot wall can be seen over laying the results of Bessaih
et al. (1999) in Figure 3. As seen the results show good agreement with the literature.

The second test case examined was a solidification problem with and without the
presence of a magnetic field in the x-direction. For this the work of Dulikravich et al.
(1994) was used as a benchmark. One of their problems consisted of a cubical enclosure
filled with molten silicon subjected to a temperature differential in the x-direction.
A grid system of 20 £ 20 £ 20, similar to that of Dulikravich et al. (1994), was utilized
for our code validation. They presented results for Gr ¼ 67:99 £ 104; Pr ¼ 0:01161;
and Ha ¼ 0 and 100. Since they examined a solidification problem they were primarily
concerned with the amount of solid which accrued over time. To track this accrued
solid they calculated the number of solidified cells within the computation domain.
A solidified cell consists of a discretized volume of the computation domain which has
been completely solidified from melted material. Two numerical runs were performed,
the first without a magnetic field and the second with a magnetic field ðHa ¼ 100Þ

Figure 3.
Variation of the average

Nusselt number as a
function of Ra, Ha: solid

geometries are from
Bessaih et al. (1999) and

hollow geometries are
from current work
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applied in the x-direction. The identical boundary conditions have been used where the
hot wall is maintained at u ¼ 2:0 and the cold wall is maintained at u ¼ 21:0: For
the case where no magnetic field has been applied, a comparison of the number of
solidified cells showed a reasonable variation of 5.3 percent (1,761 cells vs 1,666 cells)
over the test case results. For the case where a magnetic field was applied, a
comparison of the number of solidified cells resulted in a 1.6 percent increase (2,020
cells vs 1,986 cells) over the test case results.

Discussion of results
Low-gravity can be simulated by an electromagnetic field in one of the following
configurations:

. low electric field and a high magnetic field;

. low magnetic field and an high electromagnetic field; and

. everything in between.

Owing to the countless possible combinations, all efforts will be concentrated on the
two limiting cases. We will refer to the “Low electric field with high magnetic field” as
the magnetic simulation of low-gravity or “magnetic low-g”, and the “Low magnetic
field with high electric field” as the electromagnetic simulation of low-gravity or
“electromagnetic low-g”. The governing parameters for each case are the Hartmann
number (Ha), for magnetic low-g, and the electromagnetic pressure number (Mp), for
electromagnetic low-g.

In order to simulate low-gravity via an electromagnetic field, the correct field
strength must be determined such that the Lorentz force associated with this field can
be used to damp and/or counter act the effects of normal gravity. By studying the
effects of low-gravity, magnetic, and electromagnetic fields on the mass circulation
(cmax) a correlation between low-gravity and simulated low-gravity has been
developed (Figure 4). The mass circulation represents the mass flow of melted PCM
passing through an imaginary plane in the XZ plane located at Y ¼ 0:5 and can be
defined as cmax ¼ rlvA where rl, v, and A are the liquid density, liquid velocity and
area, respectively.

The computations were first carried out for actual low-gravity where both fields are
set to zero (i.e. Ha ¼ Mp ¼ 0) and the Grashoff number (Gr) is the controlling
parameter which is a function of the gravity acceleration. The gravity acceleration has
been varied from 9.81 m s22 to 0.00000981 m s22 and the ratio of the gravity
acceleration (g) to normal gravity (go) is used to classify the level of low-gravity
(i.e. g=go ¼ 0:0981=9:81 ¼ 1022 is referred as 1022 level of low-gravity). The resulting
data was plotted (the line with hollow squares) on a reverse Gr-axis so that at
normal gravity, the cmax(Gr) curve coincides with those of zero-field
(i.e. cmaxðGroÞ ¼ cmaxðHa ¼ 0Þ ¼ cmaxðMp ¼ 0Þ), where Gro ¼ GrðgoÞ and go is the
normal gravity. Next the effects of a varying magnetic field were studied with the
gravitational level set to Gro (normal gravity) and Mp ¼ 0 (no applied electric field).
The resulting data was plotted in terms of Hartman number (Ha) and is depicted by the
line with hollow circles in Figure 4. Finally, the effects of a varying electromagnetic
field were studied with the gravity level set to Gro (normal gravity). To do so, a
relatively weak ðB ¼ 0:01 TÞ fixed magnetic field is crossed with a varying electric
field. The value of B ¼ 0:01 T was the weakest magnetic field (by order of magnitude),
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necessary to prevent the effects of Joule heating from setting in. The subsequent data
was plotted in terms of electromagnetic pressure (Mp) and is depicted by the line with
hollow diamonds. The values of Ha(B) and Mp(Df) necessary to simulate low-gravity
can be attained by matching the mass circulation (cmax) in a straight line across the
three curves. The ranges and values for selected cases of simulated low-gravity are
presented in Table III.

Upon examination of Figure 4, the limitations of simulating low-gravity via
magnetic and electromagnetic fields are evident. For the magnetic field simulations, the
cmax(Ha) curve displays an asymptotic behavior suggesting that an infinitely large
magnetic field is required to achieve a true zero-g environment. For the electromagnetic
filed simulation, the cmax(Mp) curve shows that a zero-g environment cannot be
achieved under any circumstances. Furthermore, it is apparent that a critical value of
electromagnetic pressure (Mpe) exists for which the flow behavior changes abruptly
and actually reverses in flow direction. The details of this anomaly will be discussed in
detail further along in this paper.

Figure 4.
Mass circulation as a

function of gravity
(hollow squares), magnetic

low-gravity
(hollow circles), and

electromagnetic
low-gravity

(hollow diamonds) at
t ¼ 3 and Ste ¼ 0:05

Low-gravity Simulation via electromagnetic field
Simulation via
magnetic field

g/go Gr(g) Df(V) Mp ð0:01;DfÞ Bo (T) Ha
1021 8035845.80 4.090 £ 1025 289,000,000 0.0413 73.9
1022 803584.580 4.658 £ 1025 342,500,000 0.0894 160.0

Table III.
Low-gravity range and

its equivalent in magnetic
and electromagnetic

simulation

Phase change in
3D rectangular

cavity

725



A comparative analysis has been performed, using the results of Tables III and IV,
between the low-gravity and simulated low-gravity cases to study the
three-dimensional effects on the flow field and interface shape along with key
melting characteristics such as the interface location (Xinf), and melt rate (DV/DV0).
Furthermore, each of these characteristics was analyzed with respect to the effects of
gravity levels and Stefan number as curve parameters.

Three-dimensional effects
The interface shapes and velocity vector fields are shown in Figures 5-7. As shown in
Figures 5-7, labels (a), (b), and (c) represents true low-gravity, electromagnetically
simulated low-gravity and magnetically simulated low-gravity, respectively. While the
labels (0), (1) and (2) represents the gravity level for which case, (0) corresponds to
natural convection or g ¼ go, with Ha ¼ Mp ¼ 0, (1) corresponds to g=go ¼ 1021 with
simulation by magnetic field given as Ha ¼ 73:9 and by electromagnetic field as
Mp ¼ 298; 000; 000 and finally, label (2) corresponds to g=go ¼ 1022 with simulated
case given by Ha ¼ 160:0 and Mp ¼ 342; 500; 000:

Figure 5 shows the XY plane located at Z ¼ 0:5 for natural convection, low-gravity
and simulated low-gravity at t ¼ 3 and Ste ¼ 0:05: It can be seen that the effects of
natural convection decrease dramatically by reducing the level of gravity by only two
orders of magnitude. Comparison of the flow field and interface shape (solid line)
shows good agreement between that of true low-gravity and electromagnetically
simulated low-gravity. However, this is not the case for magnetically simulated
low-gravity. The flow field is distorted for all cases that a magnetic field is used to
dampen or suppress the convective flow. The effect of the magnetic field (Bo)
suppresses motion normal to the field while enhancing it parallel to the field
(Gonçalves et al., 2005; Hayase et al., 1992). By inspection of Figures 7(c1) and (c2) a
“squeezing” of the flow to the walls and interface front can be observed which is a
direct result of the know behavior of a conducting fluid subjected to a magnetic field.
This “squeezing” effect forms what is commonly called the Hartman layer.

Figure 6 shows the XZ plane located at Y ¼ 0:5 for natural convection, low-gravity
and simulated low-gravity at t ¼ 3 and Ste ¼ 0:05: Examination of this plane and the
YZ plane (discussed further along) is where the true three-dimensional nature of this
problem begins to show. For the natural convection case and the g=go ¼ 1021 case
some interesting observations can be made:

Dimensionless parameters Symbol Value

Aspect ratio A 1.00
Grashoff number Gr 8099090.44
Electromagnetic pressure number Mp 266894896.64
Hartmann number Ha 1790.29
Phase transition number L0 1.296 £ 10212

Prandtl number Pr 0.024
Stefan number Ste 0.05
Electrical conductivity ratio Ps 1.73
Thermal diffusivity ratio Pa 1.03
Dimensionless resistivity PR 0.031

Table IV.
Dimensionless
parameters and their
characteristic values
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. a “scalloping” effect is occurring which causes the interface front to have a
concave shape in addition to the natural convective shape shown in Figure 5; and

. a symmetry appears to form about the XY plane at Z ¼ 0:5:

These distortions in the flow field and interface shape are a direct result of the interface
front moving with time and the no slip boundary conditions at the enclosure walls. For
the g=go ¼ 1022 case the decrease in the level of gravity has a significant effect on the

Figure 5.
Interface shape and

velocity vectors in the XY
plane ðZ ¼ 0:5Þ at t ¼ 3

and Ste ¼ 0:05
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interface shape along with the flow field. The interface straightens out due to the
reduced intensity of the buoyancy forces driving the fluid flow. Comparison of the flow
field and interface shape show that the electromagnetically simulated low-gravity
compares quite well for the g=go ¼ 1021 case. It can be seen that the interface shape
still contains a slight “scalloping” effect and the flow field contains re-circulation cells
in the upper and lower left hand corners of the enclosure. As the electromagnetic field
was increased to simulate the g=go ¼ 1022 case the flow field and interface shape
begin to change from that of actual low-gravity. The re-circulation cells present for
g=go ¼ 1021 case have intensified and as a direct result have caused the interface
shape to become slightly convex. Again the magnetically simulated low-gravity does
not compare well to that of actual low-gravity as expected from the previous
discussion. Only for the g=go ¼ 1022 case, where the problem becomes conduction like,

Figure 6.
Interface shape and
velocity vectors in the XZ
plane ðY ¼ 0:5Þ at t ¼ 3
and Ste ¼ 0:05
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does the interface shape appear in agreement with true low-gravity. However, the flow
field is significantly distorted from actual low-gravity.

Figure 7 shows the YZ plane located at X ¼ 0:5 for natural convection, low-gravity
and simulated low-gravity at t ¼ 3 and Ste ¼ 0:05: In this plane the results show, as
expected, that the magnetically simulated flow field and interface shape are distorted
from actual low-gravity. The electromagnetically simulated low-gravity appears
similar for the g=go ¼ 1021 case but differ from the g=go ¼ 1022 case. Upon
examination of Figure 7 for the g=go ¼ 1022 case, it can be seen that the flow fields for
both actual low-gravity and electromagnetically simulated low-gravity contains a
symmetry plane. But the flow fields are opposite of each other about this symmetry

Figure 7.
Interface shape and

velocity vectors in the YZ
plane ðX ¼ 0:5Þ at t ¼ 3

and Ste ¼ 0:05
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plane. For actual low-gravity the flow field curves away from the symmetry plane at
the top of the enclosure and then straightens out at the middle of the enclosure before
curving slightly away from the symmetry plane again at the bottom. However, for
electromagnetically simulated low-gravity the flow field curves in towards the
symmetry plane at the top of the enclosure and then straightens out at the middle of
the enclosure before curving back inward toward the symmetry plane at the bottom
of the enclosure.

Mass circulation
The mass circulation (cmax) as a function of dimensionless time is shown in Figure 8
for both actual low-gravity and simulated low-gravity. It can be seen that the curves
converge at t ¼ 3 which is the time where the graphical correlation was obtained. The
electromagnetically simulated low-gravity (solid circles) shows excellent agreement
with the g=go ¼ 1021 case of low-gravity (solid lines). The g=go ¼ 1022 case of
electromagnetically simulated low-gravity does not compare as well as the g=go ¼
1021 case. This can be directly attributed to the following. The level of Mp required to
achieve the g=go ¼ 1022 case is very close to the level in which the flow reverses
direction, Mpe and can be seen in Figure 4. Because this level of low-gravity is close to
the reversal point, the buoyancy forces created by the temperature gradient do not
dominate the flow field, causing the mass circulation diverge slightly. Furthermore, the
three-dimensional effects caused by the application of an electromagnetic field have
intensified in strength and are also influencing the mass circulation.

As an aside it should be noted that when using an electromagnetic field to simulate
low-gravity to levels greater than g=go ¼ 1021 it is necessary to increase the grid
density in the z-direction in order to capture the three-dimensional effects on the mass

Figure 8.
Effect of gravity level on
the mass circulation (cmax)
as a function of time
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circulation. For the g=go ¼ 1022 case, a grid system of 42 £ 42 £ 42 was utilized to
capture the aforementioned effects on the mass circulation. Upon further examination
it was determined that the mass circulation is the only parameter of this study to have
a significant dependency on the grid density in the z-direction. This can be seen in
Figures 9(a)-(c), where the interface location (Xinf), mass circulation (cmax), and melt
rate have been plotted for various grid systems. The interface location and melt rate,
showed no significant variation in value with increased grid density in the z-direction.

For magnetically simulated low-gravity (hollow circles), significant disagreement
exists with that of actual low-gravity, which is expected from the known behavior of a
conducting fluid in the presence of a magnetic field (Asako and Faghri, 1999).

Interface location
The characteristics of this problem are such that the interface location is a good
measure of melting for the fixed PCM, because at low-gravity conditions the processes
essentially becomes conduction-like as shown in Figure 5. The interface location is
presented at the middle of the Y- and Z-axes. Figure 10 shows the interface location as a
function of time for actual low-gravity and simulated low-gravity. Figure 10(a) shows
the effects of gravitational level on the interface location, where the results show that
the interface location for both magnetically and electromagnetically simulated
low-gravity match fairly well with true low-gravity. Further inspection of Figure 10(a)
shows that the rate at which the interface location progresses through the domain
significantly slows from full gravity g=go ¼ 1 (natural convection) to g=go ¼ 1021:
The change is significantly less for the transition from g=go ¼ 1021 to g=go ¼ 1022,
which suggests that a conduction-like processes is becoming evident. This is validated
by superimposing the classical Stefan solution

ðX inf ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Stet

p
Þ

over the g=go ¼ 1022 curve. Here it can be seen that both the classical Stefan solution
and calculated interface location are nearly identical.

Figure 10(b) shows the results of varying Stefan number for the low-gravity case of
g=go ¼ 1022: It can be seen that both the magnetically and electromagnetically
simulated low-gravity compare well with that of actual low-gravity for each value of
Stefan. Furthermore, the classical Stefan solution has been superimposed over the
results and shows good agreement with each value of Stefan.

Melt rate
The ratio of solid PCM volume to its initial value (melt rate) is shown in Figure 11 as a
function of dimensionless time. Figure 11(a) shows the effects of gravitational level on
the melt rate, the results show that the melt rate for magnetically simulated
low-gravity matches fairly well with actual low-gravity and also shows that the
electromagnetically simulated low-gravity diverges with increased time. This can
be explained by revisiting Figure 6, recall that two re-circulation cells existed for the
electromagnetically simulated low-gravity case that were not present for actual
low-gravity. These re-circulation cells caused the interface shape to vary from actual
low-gravity and become slightly convex. As time increases these re-circulation cells
develop in intensity causing more melting to occur and thus explains the diverging
melt rate. Further inspection of Figure 10(a), shows that a significant decrease in the
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Figure 9.
Effect of grid density in
the Z-direction for
electromagnetically
simulated low-gravity
cases: (a) interface location
(Xinf), (b) mass circulation
(cmax), and (c) Melt rate
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Figure 10.
Interface location in the X

direction (Xinf) as a
function of time: (a) effects

of gravity level, and (b)
effects of Stefan number
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Figure 11.
Melt Rate as a function of
time: (a) effects of gravity,
and (b) effects of Stefan
number (Ste)
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melt rate occurs from full gravity g=go ¼ 1 (natural convection) to g=go ¼ 1021; which
is in agreement with the behavior of the interface shape and interface location
previously discussed.

The effect of varying Stefan number is shown in Figure 11(b). The results show that
the melt rate agrees very well for magnetically simulated low-gravity for each value of
Stefan examined. However, for the electromagnetically simulated low-gravity, the
results again show a similar divergence with increasing dimensionless time. This
divergence can be explained with the same reasoning as above for the varying gravity
level case.

Flow reversal
A unique feature of simulating low-gravity via an electromagnetic field is a flow
reversal phenomenon. Referring to Figure 4, this reversal can be seen quite clearly and
occurs when the value of electromagnetic pressure exceeds the equivalent point of
Mpe ¼ 351130000:0: Figure 12 shows the process occurring in three steps, where the
labels (a), (b), and (c) represents the XY plane (at Z ¼ 0:5), XZ plane (at Y ¼ 0:5), and
YZ plane (at X ¼ 0:5), respectively. While labels 0, 1, and 2 represent the
electromagnetically simulated low-gravity prior to reversal, at the equilibrium point
and post-reversal, respectively. Essentially what is occurring is the Lorentz force, used
to damp and or suppress the buoyancy forced created by the temperature gradient, is
increasing to a point where it is larger than that of the buoyancy force.

This phenomenon can be readily explained if we revisit the source terms in the
Y-momentum equation (equation (35)) pertaining to this behavior

ð1 2 f sÞGrPr
2uAþ ð1 2 f sÞ

PRMpPr 2uA

1 þPRu

›c

›Z

Both terms are a function of dimensionless temperature (u) but behave the opposite of
each other. Contributions by the Grashoff (Gr) or buoyancy term decreases in strength
as u decreases. However, the contribution of the electromagnetic pressure (Mp) term
increases with decreasing values of (u) because of the (u) term in the denominator.

The flow prior to the equilibrium point is dominated by the buoyancy force (Gr(u))
and can be seen in Figures 12(a)(0)-(c)(0). Here two re-circulation cells are visible where
the left cell or Gr(u) cell can be seen to dominate over the right cell or Mp(u). If you
recall the flow field in Figure 5, there is one dominant clockwise re-circulation cell in
the XY plane. But for this case, the effects of the Gr(u) term are losing dominances over
the flow field and the Lorentz force generated by the increasing electromagnetic field is
approaching that of the buoyancy force. When the Lorentz force reaches the equivalent
of the buoyancy force, “flow equilibrium” occurs (i.e. Mp ¼ Mpe). Here, neither the
Lorentz or the buoyancy force dominates the flow which results in two near equivalent
re-circulation cells (Figures 12(a)(1)-(c)(1)). The buoyancy force (Gr(u) term) generates
the left re-circulation and the right re-circulation is generated by the Lorentz force
(Mp(u) term). By further increasing the level of the electromagnetic field, the flow itself
begins to revere in rotation. Figures 12(a)(2)-(c)(2) show this, it is clearly seen the
re-circulation to the right (next to interface) is beginning to dominate the flow field.
As the electromagnetic field is increased further the right re-circulation cell increases in
intensity until fully over coming the left re-circulation cell and thus achieving full flow
reversal without ever reaching zero.
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Electric potential distribution
The electric potential distribution in the XZ plane can be seen in Figure 13 for the
g=go ¼ 1022 electromagnetically simulated low-g case ðMp ¼ 3:39 £ 108Þ: The
electric potential distributions for all other levels of electromagnetic simulated low-g
follow in a similar fashion. Upon inspection of Figure 13, it can be seen that the
distribution is linear in the solid region but slightly non-linear in the liquid region
which can be seen by focusing attention to the electric potential lines at the
solid/liquid interface (bold line), where it can be seen change of phase causes a
slight “bend” to the electric potential lines. This behavior can be explained by
re-visiting equation (37) below

Figure 12.
Flow reversal interface
shape and velocity vector
field at t ¼ 3 and
Ste ¼ 0:05
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the right hand side contains velocity gradients which explain the linear vs
non-linear behavior of the electric potential. In the solid phase, these velocity
gradients are equal to zero since the solid material is held fixed and U ¼ V ¼
W ¼ 0: However, in the liquid phase these velocity gradients are present and
contribute to the non-linearity of the electric potential distribution.

Two-dimensional vs three-dimensional comparison
As previously stated one of the objectives of this work was to extend the
two-dimensional problem of Gonçalves et al. (2005) into three dimensions and assess
the three-dimensional effects. Table V contains a comparison of all key parameter
and results at t ¼ 3 for both two- and three-dimensional problems. Comparison of
these parameters shows that the values and results vary from one another by a
significant percentage. It can be concluded that the two-dimensional solution
provides only an approximation of the problem physics. The combination of the
moving interface front and no slip conditions along the walls result in
three-dimensional effects that cannot be ignore. These three-dimensional effects
have been shown to influence the interface shape and flow field in ways not capture
by only a two-dimensional analysis.

Figure 13.
Electric potential

distribution in the XZ
plane at Y ¼ 0:5; t ¼ 3;
Ste ¼ 0:05; and g=go ¼

1022 electromagnetically
simulated low-g ðMp ¼

3:39 £ 108Þ
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Conclusions
The melting of a PCM by sidewall heating was utilized to study the effects of natural
convection under actual low-gravity and electromagnetically simulated low-gravity. It
was shown that the melting characteristics such as the maximum melt circulation,
interface front location, and the melting rate under low-gravity environment can be
simulated via magnetic and electromagnetic fields. However, the flow fields for
magnetically simulated low-gravity show significant distortion from that of actual
low-gravity. While for the case of electromagnetically simulated low-gravity, good
agreement of the flow field can be found only in the XY plane. The two remaining planes
show distortions in the flow field but the overall effect appears to be minimal on the
studied parameters. Furthermore, it was also shown that when the level of gravity is
reduced by two orders of magnitude the melting process becomes conduction-like. It was
further shown that under electromagnetic simulation, it is possible to achieve flow reversal
for Mp greater than a certain critical value, Mpe. Finally, it was learned that the flow
reversal was accompanied by a transition mechanism that allow the convection process to
be either thermally or electromagnetically dominated, but never completely halted.

In closing, the electromagnetic simulation of low-gravity allows the flow field
distortion due to high magnetic field to be significantly reduced and thereby more
accurately simulate the effects of actual low-gravity.
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Asako, Y., Gonçalves, E., Faghri, M. and Charmchi, M. (2002), “Numerical solution of melting
processes for fixed and unfixed phase change material in the presence of electromagnetic
field – simulation of low gravity environment”, Numerical Heat Transfer, Part A, Vol. 42,
pp. 565-83.

Asako, Y. and Faghri, M. (1999), “Effect of density change on melting of unfixed rectangular
phase-change material under low-gravity environment”, Numerical Heat Transfer, Part A,
Vol. 36, pp. 825-38.

Bessaih, R., Kadja, M. and Marty, Ph. (1999), “Effect of wall electrical conductivity and magnetic
field orientation on liquid metal flow in a geometry similar to the horizontal Bridgman

g=go ¼ 1021 g=go ¼ 1022

Current work Mp 289,000,000 342,500,000
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